NAG Toolbox for MATLAB

f08se

1 Purpose

f08se reduces a real symmetric-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, where A is a real symmetric matrix and B has been factorized by f07fd.

2 Syntax

$$[a, info] = f08se(itype, uplo, a, b, 'n', n)$$

3 Description

To reduce the real symmetric-definite generalized eigenproblem $Az = \lambda Bz$, $ABz = \lambda z$ or $BAz = \lambda z$ to the standard form $Cy = \lambda y$, f08se must be preceded by a call to f07fd which computes the Cholesky factorization of B; B must be positive-definite.

The different problem types are specified by the parameter **itype**, as indicated in the table below. The table shows how C is computed by the function, and also how the eigenvectors z of the original problem can be recovered from the eigenvectors of the standard form.

itype	Problem	uplo	В	С	Z
1	$Az = \lambda Bz$	'U' 'L'	$U^{\mathrm{T}}U$ LL^{T}	$U^{-\mathrm{T}}AU^{-1}$ $L^{-1}AL^{-\mathrm{T}}$	$U^{-1}y$ $L^{-T}y$
2	$ABz = \lambda z$	'U' 'L'	$U^{\mathrm{T}}U$ LL^{T}	$UAU^{\mathrm{T}} \ L^{\mathrm{T}}AL$	$U^{-1}y$ $L^{-T}y$
3	$BAz = \lambda z$	'U' 'L'	$U^{\mathrm{T}}U$ LL^{T}	$UAU^{\mathrm{T}} \ L^{\mathrm{T}}AL$	$U^{\mathrm{T}}y$ Ly

4 References

Golub G H and Van Loan C F 1996 Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

5.1 Compulsory Input Parameters

1: itype – int32 scalar

Indicates how the standard form is computed.

itype = 1
if uplo = 'U',
$$C = U^{-T}AU^{-1}$$
;
if uplo = 'L', $C = L^{-1}AL^{-T}$.
itype = 2 or 3
if uplo = 'U', $C = UAU^{T}$;
if uplo = 'L', $C = L^{T}AL$.
Constraint: itype = 1, 2 or 3.

[NP3663/21] f08se.1

f08se NAG Toolbox Manual

2: **uplo – string**

Indicates whether the upper or lower triangular part of A is stored and how B has been factorized.

$$uplo = 'U'$$

The upper triangular part of A is stored and $B = U^{T}U$.

$$uplo = 'L'$$

The lower triangular part of A is stored and $B = LL^{T}$.

Constraint: uplo = 'U' or 'L'.

3: a(lda,*) - double array

The first dimension of the array **a** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The n by n symmetric matrix A.

If $\mathbf{uplo} = 'U'$, the upper triangular part of A must be stored and the elements of the array below the diagonal are not referenced.

If $\mathbf{uplo} = 'L'$, the lower triangular part of A must be stored and the elements of the array above the diagonal are not referenced.

4: b(ldb,*) - double array

The first dimension of the array **b** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The Cholesky factor of B as specified by **uplo** and returned by f07fd.

5.2 Optional Input Parameters

1: n - int32 scalar

Default: The second dimension of the array a The second dimension of the array b.

n, the order of the matrices A and B.

Constraint: $\mathbf{n} \geq 0$.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldb

5.4 Output Parameters

1: a(lda,*) - double array

The first dimension of the array **a** must be at least $max(1, \mathbf{n})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The upper or lower triangle of a contains the corresponding upper or lower triangle of C as specified by **itype** and **uplo**.

2: info - int32 scalar

info = 0 unless the function detects an error (see Section 6).

f08se.2 [NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

```
info = -i
```

If info = -i, parameter i had an illegal value on entry. The parameters are numbered as follows:

```
1: itype, 2: uplo, 3: n, 4: a, 5: lda, 6: b, 7: ldb, 8: info.
```

It is possible that **info** refers to a parameter that is omitted from the MATLAB interface. This usually indicates that an error in one of the other input parameters has caused an incorrect value to be inferred.

7 Accuracy

Forming the reduced matrix C is a stable procedure. However it involves implicit multiplication by B^{-1} (if **itype** = 1) or B (if **itype** = 2 or 3). When f08se is used as a step in the computation of eigenvalues and eigenvectors of the original problem, there may be a significant loss of accuracy if B is ill-conditioned with respect to inversion. See the document for f08sa for further details.

8 Further Comments

The total number of floating-point operations is approximately n^3 .

The complex analogue of this function is f08ss.

9 Example

```
itype = int32(1);
uplo = 'L';
a = [0.24, 0, 0, 0;
     0.39, -0.11, 0, 0;
     0.42, 0.79, -0.25, 0;
-0.16, 0.63, 0.48, -0.03];
b = [2.039607805437114, 0, 0, 0;
     -1.529705854077835, 1.640121946685673, 0, 0;
     0.2745625891934577, -0.2499814119483738, 0.7887488055748053, 0;
           -0.04902903378454601, 0.6188564222624378, 0.6442661302310234,
0.6160633375780701];
[aOut, info] = f08se(itype, uplo, a, b)
aOut =
    0.0577
                    0
                                          0
             0.2268
                                          \cap
    0.1704
                               0
                         -0.0500
    0.2950
              0.8667
                                          0
              -0.6159
                         0.3972
                                    -1.6875
   -0.6024
info =
            0
```

[NP3663/21] f08se.3 (last)